Cyclometallation of polydentate ligands containing pyrazole groups, including the synthesis of platinum(IV) complexes with tripodal $[\mathbf{N}-\mathbf{C}-\mathbf{N}]^{-}$ligand systems

Allan J. Canty * and R. Thomas Honeyman
Chemistry Department, University of Tasmania, Hobart, Tasmania, Australia 7001 (Australia)

(Received November 13th, 1989)

Abstract

Dimethylplatinum(II) complexes, $\mathrm{PtR}_{2}(\mathrm{~L})$, have been made by reaction of $\left[\operatorname{PtR}_{2}\left(\mu-\mathrm{SEt}_{2}\right)\right]_{2}$ with a range of polydentate nitrogen donor ligands containing one or more pyrazol-1-yl (pz) donor groups, including the new ligand bis(pyrazol-1$\mathrm{yl})$ (thien-2-yl)methane. The complexes give cis- $\mathrm{PtMe}_{2}(\mathrm{py})_{2}$ when dissolved in pyridine at ambient temperature, except for $\mathrm{PtMe}_{2}(\mathrm{~L})\left(\mathrm{L}=(\mathrm{pz})_{2} \mathrm{CH}_{2},(\mathrm{pz})_{2} \mathrm{C}(\mathrm{H}) \mathrm{Ph}\right.$, $(\mathrm{pz})_{3} \mathrm{CH}$, or $(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{CH}(\mathrm{mim}=N$-methylimidazol-2-yl)), which undergo cyclometallation at a $C(5)$ position of one pyrazol-1-yl ring. The cyclometallated ligands have been examined as 'isoelectronic' analogues of nitrogen donor poly(pyrazol-1-yl)alkane and poly(pyrazol-1-yl)borate ligands. A carbon monoxide derivative, $\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, C\right\}(\mathrm{CO})$ (1d) and a series of phosphine complexes have been prepared. The complex $\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, C\right\}(\mathrm{py})$ (1a) and polymeric $\left[\mathrm{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}\right\}\right]_{n}$ (2) undergo oxidative addition reactions with organohalides to give the platinum(IV) complexes [fac$\left.\operatorname{PtMe}(\mathrm{R})\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, \mathrm{C}\right\}(\mathrm{py})\right] \mathrm{X} \quad(7 \mathbf{a}-\mathbf{d})$ and fac-PtXMe(R)$\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, C\right\}(8 a, b)$, respectively. The new reagent 1-bromo-2-(pyrazol-1-yl)ethane forms [fac-PtMe $\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, \mathrm{C}\right\}\left(\mathrm{pzCH}_{2} \mathrm{CH}_{2}-\right.$ $N, C)] \mathrm{Br}(10)$, containing both $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}$and $[\mathrm{N}-\mathrm{C}]^{-}$ligands. Reaction of MeI or $\mathrm{PhCH}_{2} \mathrm{Br}$ with $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ gives fac- $\mathrm{PtXMe}(\mathrm{R})\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, C\right\}$ (8a,b) directly, and $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{4} \mathrm{C}\right\}$ undergoes a similar cyclometallation/oxidative addition in iodomethane to form fac- $\mathrm{PtIMe}_{2}\left\{(\mathrm{pz})_{3}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, C\right\}$ (13).

Introduction

Cyclometallation reactions involving metal-carbon σ-bond formation by donor ligands occur for many reagents containing one donor atom [1-10], usually nitrogen [1-5,7-10], e.g. 2-phenylpyridine (pyPh), 2-benzylpyridine, and α-phenyl- α-(pyri-din-2-yl)toluene react readily with palladium(II) acetate to form the palladocycle complexes $\left[\mathrm{Pd}\left(\mathrm{pyC}_{6} \mathrm{H}_{4}-N, C\right)\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}[11,12]$ and $\mathrm{A}[13,14]$.

The occurrence of cyclometallation reactions for reagents containing more than one donor group has been reported for two classes of reagent. The most common are those for which polydentate coordination by the donor groups encourages or requires metallation at an addition site(s), e.g. for nitrogen donor ligands palladation of phenyl rings of $\left\{\mathrm{PhCH}_{2}(\mathrm{Me}) \mathrm{NCH}_{2}\right\}_{2} \mathrm{CH}_{2}$ and 1,3-bis[1-(pyridin-2yl)ethyllbenzene results in formation of $\mathrm{PdCl}\left\{\mathrm{PhCH}_{2}(\mathrm{Me}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me})\right.$ $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-N, N^{\prime}, C$ \} [15] and B [16], respectively. However, cyclometallation of a heterocyclic ring(s) of a polydentate ligand, rather than simple donor atom chelation by the ring(s), has been reported for only a limited number of reagents, e.g. $2,2^{\prime}$-bipyridyl in $\left[\operatorname{Ir}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}-N, N^{\prime}\right)_{2}\left\{\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}(\mathrm{NH})-N, C\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+} \quad[17]$ and $\left\{\operatorname{PtPh}\left(4-\mathrm{Bu}^{\prime} \mathrm{py}\right)\right\}_{2}\left(\mu-\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2}-N, C, N^{\prime}, C^{\prime}\right) \quad(\mathrm{C}) \quad[18], \quad 2-\left(2^{\prime}\right.$-thienyl)pyridine $\left[\mathrm{py}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)\right]$ in $\left\{\mathrm{Pd}\left[\mathrm{py}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~S}\right)-N, C\right](\mu-\mathrm{Cl})\right\}_{2}$ [19a], and tris(pyrazol-1-yl)methane [$\left.(\mathrm{pz})_{3} \mathrm{CH}\right]$ in P iMe $\left((\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)-N, C\right\}(\mathrm{py})(1 a)$ [20,21]. Complex 1a is apparently the only reported example of cyclometallation of a potential donor ring in which the rings are linked by a bridging group (CH), rather than linked directly as in

($\mathrm{A} ; \mathrm{R}=\mathrm{H}[13], \mathrm{Ph}[14]$)

(C)

(E)

(F)

2,2'-bipyridyl or 2-(2'-thienyl)pyridine. Reaction of palladium(II) acetate with pyridine groups linked in this manner, e.g. with $(\mathrm{py})_{2} \mathrm{CH}_{2},(\mathrm{py})_{2} \mathrm{PhCH}$, and (py) ${ }_{3} \mathrm{CH}$, results in isolation of N, N^{\prime}-coordination complexes rather than cyclometallation [14]. Complex 1a is formed when $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ is dissolved in pyridine, and has been characterized by X-ray crystallography, together with the derivative $\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)-\mathrm{C}\right\}\left(\mathrm{PPh}_{3}\right)(\mathrm{py}) .2 \mathrm{py}(\mathrm{D})$, containing the ligand as a unidentate C-donor [21]. The derivative $\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)-C\right\}\left(\mathrm{PPh}_{3}\right)_{2}$ (6a) undergoes an additional cyclometallation on melting, to form $\operatorname{Pt}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)\right.$ $N, C\}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)-P, C\right\}(\mathbf{E})$. In view of the unusual features exhibited by these complexes we decided to undertake further studies of the tendency of $(\mathrm{pz})_{3} \mathrm{CH}$ and related ligands to undergo platination. The ligands studied include bis(pyrazol-1yl)alkanes, $(\mathrm{pz})_{2} \mathrm{C}(\mathrm{R}) \mathrm{R}^{\prime}$, related ligands containing pyridin-2-yl(py) and N-methyl-imidazol-2-yl)(mim) groups and the new ligand bis(pyrazol-1-yl)(thien-2-yl)methane, (pz) ${ }_{2}($ thi $) \mathrm{CH}$.

The reactivity of some of the cyclometallated complexes toward phosphine ligands has been studied, together with oxidative addition reactions to give, for example, platinum(IV) complexes with metallated tris(pyrazol-l-yl)methane as a tripodal $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}$group formally isoelectronic with tridentate $\left[(\mathrm{pz})_{3} \mathrm{BH}-\right.$ $\left.N, N^{\prime}, N^{\prime \prime}\right]^{-}$. This appears to be the first report of tripodal $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}$ligands, in contrast to the well established and topical planar [$\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}[10,16,22-24]$ and [$\mathrm{N}-\mathrm{N}-\mathrm{C}]^{-}$ligands $[10,15,23,25,26]$; preliminary reports of parts of this work have appeared [27-29].

Results and discussion

The soluble complexes exhibit ${ }^{1} \mathrm{H}$ NMR spectra with integrations in accord with formulae presented; data for the previously reported complexes 1a and 6a are included in Tables 1 and 2, respectively, for comparison. Platinum(II) complexes are shown with square-planar cis $-\mathrm{PtC}_{2}$ geometry in view of the structural results obtained for 1a and \mathbf{D}, and of spectroscopic evidence for the cis- PtC_{2} group for some of the complexes.

Synthesis of $(p z)_{2}(t h i) \mathrm{CH}$ and the N, N^{\prime}-bidentate complexes

The new ligand (pz$)_{2}$ (thi)CH was obtained by condensation of thiophene-2carboxaldehyde with bis(pyrazol-1-yl)methanone according to the procedure developed for the synthesis of related bis(pyrazol-1-yl)alkanes [30-32].

Reaction of the cycloocta-1,5-diene complex, $\mathrm{PtMe}_{2}(\operatorname{cod})$, with (pz$)_{3} \mathrm{CH}$ in refluxing benzene for 30 h gave a moderate yield (ca. 60%) of $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ [21], and improved synthetic routes to this complex were sought prior to studies with other ligands. Reaction in refluxing toluene for ca. 48 h gave a ca. 80% yield, and although this approach was successful and gave similar yields for several other ligands, the most convenient synthetic route involved reaction of $\left[\mathrm{PtMe}_{2}\left(\mu-\mathrm{SEt}_{2}\right)\right]_{2}$ with the ligands under mild conditions (ambient temperature in benzene for ca. 15 min , or heating in acetone) $\left(\mathrm{L}=(\mathrm{pz})_{2} \mathrm{C}(\mathrm{H}) \mathrm{Me}, \quad(\mathrm{pz})_{2} \mathrm{CMe}_{2}, \quad(\mathrm{pz})_{2} \mathrm{C}(\mathrm{H}) \mathrm{Ph}, \quad(\mathrm{pz})_{3} \mathrm{CH}\right.$, $\left.(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{CH},(\mathrm{pz})_{2}(\mathrm{thi}) \mathrm{CH},(\mathrm{pz})_{4} \mathrm{C}\right)$. The complexes $\mathrm{PtMe}_{2}(\mathrm{~L})\left(\mathrm{L}=(\mathrm{py})(\mathrm{pz}) \mathrm{CH}_{2}\right.$ and $\left.(\mathrm{pz})(\mathrm{mim}) \mathrm{CH}_{2}\right)$ [33] and $\mathrm{PtPh}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ were prepared for comparison.

The complexes $\mathrm{PtMe}_{2}(\mathrm{~L})\left(\mathrm{L}=(\mathrm{pz})_{2} \mathrm{CH}_{2},(\mathrm{pz})_{3} \mathrm{CH},(\mathrm{pz})_{2} \mathrm{CHPh}\right)$ are insoluble, but $\mathrm{PtMe}_{2}(\mathrm{~L})\left(\mathrm{L}=(\mathrm{pz})_{2} \mathrm{CHMe},(\mathrm{pz})_{2} \mathrm{CMe},(\mathrm{pz})_{4} \mathrm{C}\right)$ and $\mathrm{PtPh}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ exhibit varia-

Table 1
Selected ${ }^{1} \mathrm{H}$ NMR data for the cyclometallated complexes ${ }^{a}$

Complex	Metallated group		PtMe	Other
	H(3)	H(4)		
Platinum(I) complexes				
1 a			0.92 (86.4)	$8.38, \mathrm{CH} ; 8.54, \mathrm{H}(2,6)(24.6)$
1b	7.63 d	6.37 mm (24.0)	0.94 (83.6)	$8.42 \mathrm{~m}, \mathrm{CH}$ and $\mathrm{H}(2,6)$
1c	7.58 m	6.34 t(24.2)	0.88 (86.2)	$8.37, \mathrm{CH} ; 7.02 \mathrm{t}, \mathrm{H}(4)(\mathrm{mim})(15.2)$
1d	7.66 t (9.1)	6.53 t(15.0)	1.21 (87.2)	$8.38, \mathrm{CH}$
Platinum(IV) complexes				
7a	7.43 td (10.7)	6.09 td (14.3)	1.51 t (69.2)	10.45, CH; $8.35 \mathrm{~m}, \mathrm{H}(2,6)$
7 b	7.55 td (10.5)	6.39 m (14.2)	1.56 t (69.7)	$10.77, \mathrm{CH} ; 8.41 \mathrm{~m}, \mathrm{H}(2,6)(22.2)$; $3.40 \mathrm{td}, \mathrm{CH}_{2}$ (94.0) and 4.18 td , $\mathrm{CH}_{2}(68), J(\mathrm{HH}) 9.8 \mathrm{~Hz}$.
7c	7.47 t (8.7)	6.19 t (11.8)	1.51 t (69.6)	$\begin{aligned} & 10.8 \mathrm{I}, \mathrm{CH} ; 8.36 \mathrm{~m}, \mathrm{H}(2.6)(22.0) \\ & 5.62 \mathrm{~m},=\mathrm{CH} ; 5.06 \mathrm{~m},=\mathrm{CH}_{2} \\ & 2.96 \mathrm{dd}, \mathrm{PICH} \\ & 2 \end{aligned}(91.5) \text { and } 3.77 \mathrm{dd}, ~ \begin{aligned} & \mathrm{PICH} \\ & 2 \end{aligned}(88.2), J(\mathrm{HH}) 9.9 \mathrm{~Hz} .$
7d	7.44 m	6.17 td (13.8)	1.67 t (69.1)	$\begin{aligned} & 10.88, \mathrm{CH} ; 8.38 \mathrm{~m}, \mathrm{H}(2,6) ; \\ & 5.89 \mathrm{tt},=\mathrm{CH}(67.1) \\ & 4.45 \mathrm{~m}_{\mathrm{n}}=\mathrm{CH}_{2}(45.1) \end{aligned}$
8 8	7.46 td (10.8)	6.12 td (14.0)	1.87 t (74.1)	$9.47, \mathrm{CH}$
8b	7.65 d (9.0)	6.57 d (12.3)	1.80 t (73.8)	$9.38, \mathrm{CH} ; 4.05 \mathrm{~d}, \mathrm{CH}_{2}$ (69.8) and $4.21 \mathrm{~d}, \mathrm{CH}_{2}(107.3), J(\mathrm{HH}) 8.8 \mathrm{~Hz}$
10	7.42 t (10.4)	6.18 t (14.0)	1.42 t (70.4);	10.80, CH
11b	7.42 td (10.4)	6.07 td (14.0)	1.47 t (70.2)	8.61, $\mathrm{CH} ; 4.38 \mathrm{NMe}$
			1.36 t (67.0)	
13	7.49 td (9.8)	6.16 td (15.9)	1.76 t (73.9)	

${ }^{a}$ In CDCl_{3}, except for 8 b and 13 , in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} ;{ }^{1} \mathrm{H}^{195} \mathrm{Pt}$ coupling constants in brackets.
ble temperature ${ }^{1} \mathrm{H}$ NMR spectra similar to related $\mathrm{Pd}(\mathrm{II})$ complexes [33-35] and $\mathrm{PtMe}_{2}(\mathrm{~L})\left(\mathrm{L}=(\mathrm{py})(\mathrm{pz}) \mathrm{CH}_{2},(\mathrm{pz})(\mathrm{mim}) \mathrm{CH}_{2}\right)$ [33], e.g. for $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2} \mathrm{CHMe}\right\}$ one ligand Me resonance at ambient temperature is resolved into two quartets and two doublets at $<\mathrm{ca} .-20^{\circ} \mathrm{C}$, indicating exchange between two conformers with the Me or H group adjacent to Pt (axial) or away from Pt (equatorial). The spectrum of $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2}(\mathrm{thi}) \mathrm{CH}\right\}$ has one PtMe and one set of pyrazole group resonances, with the pz resonances shifted downfield by ca. 0.35 ppm from free ligand values and $\mathbf{H}(3)$ coupled with platinum (${ }^{3} J(\mathbf{H P t}) 9.3 \mathrm{~Hz}$), and with the thiophene resonances essentially unchanged, consistent with presence of the thiophene ring as the uncoordinated group. The spectrum of $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{ClH}\right\}$ at ambient temperature shows a single N-methylimidazole environment, with two pz and two PtMe environments, indicating coordination by the mim and one pz group.

Cyclometallation of pyrazole groups in N, N^{\prime}-bidentate complexes

Although $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ was initially reported to undergo cyclometallation in hot pyridine $[20,21]$, we have found that the reaction does proceed at ambient temperature during 5-6 h. Gentle warming in 4 -methylpyridine (4 -mpy) or N-methylimidazole ($N-\mathrm{mim}$) also resulted in metallation, with the isolation of complexes of these solvents (lb,c).

Table 2
${ }^{31} \mathrm{P}$ and selected ${ }^{1} \mathrm{H}$ NMR data for phosphine complexes of cyclometallated ligands ${ }^{a}$

Complex	${ }^{31} \mathrm{P}$ NMR ${ }^{\text {b }}$		${ }^{1} \mathrm{H}$ NMR ${ }^{\text {c }}$	
	P trans to Me	P trans to $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}$	PtMe	Other ${ }^{d}$
Platinum(II) complexes				
1e		21.8 t (2504)	0.31 td (77.5)	
1f		20.7 t (2599)	0.65 td (83.4)	
3	23.3 td (2215)	19.9 td (1806), J (PP) 14 Hz	0.09 tt (64.3)	
4		20.1 (2560)	0.24 tt (86.9)	
5		25.1 t (2552)	0.58 td (82.5)	
6a	20.5 td (1808)	22.9 td (2239), $J(\mathrm{PP}) 15 \mathrm{~Hz}$	0.11 tt (64.8)	
6 b	1.6 td (1718)	2.3 td (2262), J (PP) 16 Hz	0.18 tt (62.9)	
6 c	-14.3 td (1690)	-15.0 td (2214), $J(\mathrm{PP}) 17 \mathrm{~Hz}$	$0.25 \mathrm{tt} \mathrm{(65.0)}$	
6d	11.2 td (1752)	14.1 td (2264), J (PP) 16 Hz	0.12 tt (64.3)	
6 e	12.8 td (1779)	12.6 td (2281), J(PP) 15 Hz	0.26 tt (72.3)	
$6 f$	111.7 td (2863)	106.5 td (3820), J (PP) 33 Hz	0.28 tt (67.1)	
6g	-40.0 td (1291)	-43.6 td (1944), J(PP) 21 Hz	0.86 tt (70.2)	
6	40.9 t (1663)	44.0 t (2228)	0.40 tt (67.1)	
Platinum(IV) complexes				
9		-6.9 t (1491)	1.45 td (70.7)	$\begin{aligned} & 10.60, \mathrm{CH} ; \\ & 6.13 \mathrm{~m}, \mathrm{H}(4)(\mathrm{met}) \end{aligned}$
11a		-11.8 ((1503)	$\begin{aligned} & 1.38 \mathrm{td}(71.0), \\ & 1.30 \mathrm{td}(68.4), \\ & J(\mathrm{HP}) 7.0 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 8.66, \mathrm{CH} ; 7.38 \mathrm{td}, \\ & \mathrm{H}(3)(\mathrm{met})(9.3) ; \\ & 6.12 \mathrm{~m}, \mathrm{H}(4)(\mathrm{mct}) \end{aligned}$

${ }^{a}$ In $\mathrm{CDCl}_{3} .{ }^{b} J(\mathrm{PPt})$ in brackets. ${ }^{c} J(\mathrm{HPt})$ in brackets. ${ }^{d}$ Ligand resonances generally obscured by aryl resonances of phosphine ligands.

The complex $\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, C\right\}(\mathrm{py})$ (1a) forms an insoluble white solid (2) on refluxing in benzene, with microanalysis and IR spectra consistent with loss of pyridine (e.g. absence for 2 of py $\nu(\mathrm{CN})$ at $1602 \mathrm{~cm}^{-1}$ observed for 1a), and addition of pyridine regenerates the pyridine complex 1a. The complex is thus represented as a polymer $\left[\mathrm{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CH}\right\}\right]_{n}$ (2) with a structure similar to that proposed $[36,37]$ for the isoelectronic complex $\left[\mathrm{PtMe}\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\}\right]_{n}$. The pyridine complex 1a dissolves at reflux in acetone, and when CO is bubbled into the warm solution the complex $\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{C}\right\}(\mathrm{CO})$ (1d) may be readily precipitated by addition of petroleum ether. The complex is monomeric in chloroform and a Nujol mull has $\nu(\mathrm{CO})$ at $2074 \mathrm{~cm}^{-1}$, similar to that for the isoelectronic tris(pyrazol-1-yl)borate complex $\operatorname{PtMe}\left\{(\mathrm{pz})_{3} \mathrm{BH}-N, N^{\prime}\right\}(\mathrm{CO})$ (2088 cm^{-1}) [36], which has been shown by X-ray crystallography to have square-planar coordination with bidentate tris(pyrazol-1-yl)borate (F) [38].

The complex $\mathrm{PtPh}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ dissolves in pyridine without metallation, even on heating, and the ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ indicate the presence of free ligand and cis- $\mathrm{PtPh}_{2}(\mathrm{py})_{2}$. The new dimethylplatinum(II) complexes behaved similarly, giving cis- $\mathrm{PtMe}_{2}(\mathrm{py})_{2}$, except for the $(\mathrm{pz})_{2} \mathrm{CH}_{2},(\mathrm{pz})_{2} \mathrm{C}(\mathrm{H}) \mathrm{Ph}$, and $(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{CH}$ complexes, which underwent cyclometallation at ambient temperature, but the solids isolated from these reactions turned into impure oils. Addition of triphenylphosphine after cyclometallation gave the solid complexes $\operatorname{PtMe}\left\{(p z)\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)\right.$ -$\left.\mathrm{CH}_{2}-\mathrm{C}\right\}\left(\mathrm{PPh}_{3}\right)_{2}$ (3), $\mathrm{PtMe}\left\{(\mathrm{pz})\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{Ph}-N, C\right\}\left(\mathrm{PPh}_{3}\right) \quad$ (4), and $\operatorname{PtMe}\left\{(\mathrm{pz})\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)(\mathrm{mim}) \mathrm{CH}-N, C\right\}\left(\mathrm{PPh}_{3}\right)$ (5). Cyclometallation of $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2}{ }^{-}\right.$

(1a-f)

(2)
(1a-c : L = py, 4-mpy, N-mim; 1d: $\mathrm{L}=\mathrm{CO}$;
$\mathrm{te}, \mathrm{f}: \mathrm{L}=\mathrm{PPh}_{2}\left(o\right.$-tolyl), $\left.\mathrm{PPh}_{2}\left(o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right\}$

(3)

(4)

(5)

($6 \mathbf{a}-\mathrm{h}$)

$$
\begin{aligned}
(\mathbf{6 a}-\mathrm{f}: \mathrm{L}= & \mathrm{PPh}_{3}, \mathrm{PMePh}_{2}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PEtPh}_{7}, \\
& \mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{Ph}\right), \mathrm{P}\left(\mathrm{OPh}_{3} ;\right. \\
6 \mathrm{~g}, \mathrm{~h}: \mathrm{L}_{2}= & \left.\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CH}_{2},\left(\mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2}\right)
\end{aligned}
$$

(mim) CH \} was particularly rapid, and bubbles of the liberated gas were collected and identified as methane by gas chromatography and mass spectroscopy.

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of the complexes may be readily assigned, and exhibit ${ }^{3} J\left({ }^{1} \mathbf{H}^{195} \mathrm{Pt}\right)$ and ${ }^{5} J\left({ }^{1} \mathbf{H}^{195} \mathrm{Pt}\right)$ for the metallated ring, with values of ca. 12-24 and 9 Hz , respectively, and ${ }^{2} J\left({ }^{1} \mathrm{H}^{195} \mathrm{Pt}\right)$ ca. $84-87 \mathrm{~Hz}$ for the PtMe group (Tables 1 and 2, Fig. 1).

Since metallation occurs for $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2} \mathrm{CH}_{2}\right\}$ and $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2} \mathrm{C}(\mathrm{H}) \mathrm{Ph}\right\}$, then, at least for these complexes, the mechanism involves an intermediate with the ligand as a unidentate N-donor, analogous to the intramolecular roll-over mechanism proposed [18] for metallation of $\mathrm{PtPh}_{2}\left(2,2^{\prime}\right.$-bipyridyl) in 4-t-butylpyridine to form C. In accord with this interpretation, a donor solvent appears to be necessary for cyclometallation, since the four complexes that do undergo cyclometallation in pyridine are unaffected by reflux (as suspensions) in toluene or xylene, suggesting that donor solvent coordination is necessary to allow unidentate coordination of the ligands.

Fig 1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, \mathrm{C}^{\prime}\right\}(\mathrm{CO})$ (1d) in CDCl_{3}, illustrating ${ }^{1} \mathrm{H}^{195} \mathrm{Pt}$ coupling for the protons of the metallated ring ($\left.{ }^{3} J(\mathrm{HPt}) 15.0,{ }^{5} J(\mathrm{HPt}) 9.1 \mathrm{~Hz}\right)$ typical for the complexes with cyclometallated ligands, and unresolved ${ }^{1} \mathrm{H}^{195} \mathrm{Pt}$ coupling for $\mathrm{H}(3)$ of the N-coordinated ring. * Indicates an impurity.

Phosphine derivatives of platinum(II) complexes with metallated poly(pyrazol-1yl)methanes

Phosphine derivatives of the metallated ligand complexes were sought in order to allow further investigation of the formation of $[\mathrm{C}]^{-}$unidentate systems (as in \mathbf{D}), and to explore the potential for cyclometallation of phosphines to give complexes related to \mathbf{E}. The complex $\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{C}\right\}(\mathrm{py})$ (1a) reacts with two molar equivalents of triphenylphosphine in warm benzene to form $\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3}-\right.\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left(\mathrm{PPh}_{3}\right)_{2}$ (6a), and the bidentate ligands bis(diphenylphosphino)methane and bis(diphenylphosphino)ethane give the expected analogues $\mathbf{6 g}, \mathbf{h}$. However, more bulky unidentate phosphines containing one o-tolyl or o-methoxyphenyl group gave monophosphine complexes ($\mathbf{1 e}, \mathbf{f}$), and interaction of $1 \mathbf{1 a}$ with $\mathrm{PR}_{3}\left(\mathrm{R}=o\right.$-tolyl, mesityl, benzyl) resulted instead in formation of $\left[\mathrm{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3}-\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}\right\}\right]_{n}$ (2).

All the phosphine complexes are monomeric in chloroform and they exhibit ${ }^{1} \mathrm{H}$ NMR characteristics expected for the (pz$)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}$ group (coupling from ${ }^{195} \mathrm{Pt}$ to the protons of the metallated ring, one pz environment for $\mathbf{6 a}-\mathrm{h}$, and two pz environments for $\mathbf{6 f}, \mathrm{g}$). The bis(phosphine) complexes 6a-f exhibit ${ }^{31} \mathrm{P}$ spectra (Table 2) appropriate for the structures shown, rather than possible structures involving equivalent trans phosphines, e.g. the monomeric cis-bidentate $\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CH}_{2}$ (6 g) and $\left(\mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2}(6 \mathrm{~h})$ complexes give spectra similar to that of the PPh_{3} complex (6a).

Cyclometallation of phosphines

When the new phosphine complexes $\mathbf{1 e}, \mathbf{f}, \mathbf{3}, \mathbf{5 , 6} \mathbf{6} \mathbf{h}$ are heated as solids in a vacuum at their melting points, in the manner described [21] for the synthesis of $\operatorname{Pt}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)-N, C\right\}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)-P, C\right\}$ (E) from 1a, the complexes of PPh_{2} (o-tolyl) (1f), PMePh_{2} (6b), and PEtPh_{2} (6d) liberated bubbles of a gas on melting with darkening and decomposition, but the other complexes melted similarly without apparent gas evolution. No products could be isolated from the thermolyses, but the occurrence of cyclometallation, followed by decomposition, was supported by mass spectra and thermogravimetric analyses for several of the complexes. Thus, mass spectra (electron impact) for the complexes containing PPh_{3} or other unidentate phosphines exhibit parent ions for the complex and the expected product of cyclometallation, e.g. $\operatorname{Pt}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, C\right\}\left\{\mathrm{PMe}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)-P, C\right\}$ for 6c. Thermogravimetric analyses (in a vacuum) for the PPh_{3} complex 6 a show weight loss appropriate for loss of methane at the melting point, followed by loss of $\mathrm{PPh}_{3}\left(160-200^{\circ} \mathrm{C}\right)$, but the complexes of other unidentate phosphines, except $\mathrm{PMe}_{2} \mathrm{Ph}(\mathbf{6 c})$ and $\mathrm{P}(\mathrm{OPh})_{3}(6 f)$, exhibited rapid gas evolution, presumably methane, with occurrence of cyclometallation, immediately followed by nonstoichiometric weight loss as expected for decomposition of the product(s). Thermal analyses for the $\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{P}(\mathrm{OPh})_{3}$, and bidentate ligand complexes are as expected for decomposition, but do not exclude gas evolution at the melting point.

Cyclometallated $(\mathrm{pz})_{3} \mathrm{CH}$ and $(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{CH}$ as tridentate $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}$ligands
Metallated $(\mathrm{pz})_{3} \mathrm{CH}$ and $(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{CH}$, if bound to octahedral $\mathrm{Pt}^{\mathrm{IV}}$, rather than square-planar $\mathrm{Pt}(\mathrm{II})$, would be expected to act as tripodal $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}$tridentates,

Fig. 2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PtBrMe}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{N}^{\prime}, \mathrm{C}^{\prime \prime}\right\}$ (8b) in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, illustrating three ring environments, ${ }^{1} \mathrm{H}^{195} \mathrm{Pt}$ coupling for the protons of the metallated ring ($\mathrm{H} 4_{\text {met }}$, ${ }^{3} J(\mathrm{HPt}) 12.3, \mathrm{H}_{\text {met }}{ }^{5} J(\mathrm{HPt}) 9.0 \mathrm{~Hz}$), and inequivalent benzylic protons with ${ }^{2} J(\mathrm{HPt}) 107.3$ for H_{A} and 69.8 Hz for H_{B} with $\left.{ }^{2} J(\mathrm{HH}) 8.8 \mathrm{~Hz}\right)$.
isoelectronic with commonly observed tridentate $(\mathrm{pz})_{3} \mathrm{CH}$ and $\left[(\mathrm{pz})_{3} \mathrm{BH}\right]^{-}$, e.g. [fac- $\left.\mathrm{PtMe}_{3}\left\{(\mathrm{pz})_{3} \mathrm{CH}-N, N^{\prime}, N^{\prime \prime}\right\}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{PF}_{6}\right.$ [39], I [28,40]). In view of this, and interesting reports of planar $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}$systems, e.g. complex $\mathbf{B}[16]$ and 2,6 -bis[(dimethylamino)methyl $\}$ phenyl- in the $\mathrm{Pt}^{\mathrm{IV}}$ complex mer- $\mathrm{PtCl}_{3}\left\{2,6-\left(\mathrm{Me}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\right.$ N, N^{\prime}, C \} [41], we sought $\mathrm{Pt}^{\mathrm{IV}}$ derivatives of the metallated ligands.

Diorganoplatinum(II) complexes with nitrogen donor ligands are known to undergo oxidative addition reactions readily to form triorganoplatinum(IV) complexes, e.g. $\mathrm{PtR}_{2}\left(2,2^{\prime}\right.$-bipyridyl) ($\mathrm{R}=\mathrm{Me}, \mathrm{Ph}$) with iodomethane to form facPtIMeR_{2} (bipy) [42-45]. We have found that the two $\mathrm{Pt}^{\mathrm{II}}$ substrates $\mathrm{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3}-\right.\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{C}\right\}(\mathrm{py})$ (1a) and $\left[\mathrm{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}\right\}\right]_{n}$ (2) react with MeI in acetone at ambient temperature to form a cationic complex with coordinated pyridine (7a) and a neutral complex with coordinated iodide (8a), respectively. Addition of pyridine to 8 a readily gives 7a, and addition of PPh_{3} to a solution of $\mathbf{1 a}$ prior to addition of MeI gives a PPh_{3} analogue (9). Benzyl bromide reacts in a similar way with 1a and 2 to form the cationic $\mathbf{7 b}$ and neutral 8 b , and the synthesis of cations has been extended to include allyl (7c) and allenyl (7d) complexes. The allenyl complex was formed by oxidative addition of propargyl bromide to 1a, and

(7a: $\mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{I}$;
7b: $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{X}=\mathrm{Br}_{\mathrm{j}}$
7c: $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}, \mathrm{X}=\mathrm{Br}$;
7d : $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{X}=\mathrm{Br}$)

($8 \mathrm{a}: \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{I}$;
8b : $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{X}=\mathrm{Br}$)

(9)

(11a: $\mathrm{L}=\mathrm{PPh}_{3}$;
$11 \mathrm{~b}: \mathrm{L}=\mathrm{Fy}$)

(12)

(13)

(14)
similar isomerizations of the propargyl group to an allenyl group have been reported [46].
${ }^{1}$ H NMR spectra exhibit coupling to ${ }^{195} \mathrm{Pt}$ for Me, R, and metallated (pz$)_{3} \mathrm{CH}$ groups (Fig. 2), with values for Me and R consistent with trans-nitrogen donors, e.g. ${ }^{2} J\left({ }^{1} \mathbf{H}^{195} \mathrm{Pt}\right)$ for PtMe ca. $67-74 \mathrm{~Hz}$, similar to that reported for [fac$\left.\mathrm{PtMe}_{3}\left\{(\mathrm{pz})_{3} \mathrm{CH}-N, N^{\prime}, N^{\prime \prime}\right\}\right] \mathrm{I}(72 \mathrm{~Hz})$ [40] and fac-PtIMe $\left\{\left(\mathrm{pz}_{2} \mathrm{CH}_{2}-N, N^{\prime}\right\}\right.$ (72.7 Hz) [39].

The oxidative addition approach has been extended to include 1-bromo-2-(pyra-zol-1-yl)ethane, $\mathrm{pzCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$, in an attempt to synthesise a complex containing two intramolecular coordination systems, $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}$and $[\mathrm{N}-\mathrm{C}]^{-}$. The new reagent $\mathrm{pzCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ was obtained from 1,2-dibromoethane and pyrazole by a modification of the phase transfer method used for synthesis of (pz) CH_{2} [47], and it was found to react readily with both la or 2 to form the desired complex, [$\left.\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, \mathrm{C}^{\prime}\right\}\left(\mathrm{pzCH}_{2} \mathrm{CH}_{2}-\mathrm{N}, \mathrm{C}\right)\right] \mathrm{Br}$ (10). Examples of metallated $(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{CH}$ as a tripodal $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{-}$ligand (11a, b) were also obtained by reaction of MeI with 5 and the pyridine analogue.

Cyclometallation under oxidative addition conditions

The indide salt $\left[\mathrm{Pt}_{\mathrm{Me}}^{3}\right.$ ($\left.\left.(\mathrm{pz})_{3} \mathrm{CH}-N, N^{\prime}, N^{\prime \prime}\right\}\right] I$ was previously made directly from iodotrimethylplatinum(IV) species and (pz) $)_{3} \mathrm{CH}$ [40], but in an attempted synthesis of this complex by oxidative addition of MeI to $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ in acetone or dichloromethane at ambient temperature we found that the cyclometallated $\mathrm{Pt}^{\mathrm{IV}}$ complex (8a) was formed. A similar result was obtained by addition of benzyl bromide, which gave $\mathbf{8 b}$, and although $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{4} \mathrm{C}\right\}$ reacled with MeI in acetone to form $\left.\mathrm{PtIMe}_{3}\left\{(\mathrm{pz})_{4} \mathrm{C}-N, N^{\prime}\right)\right\}$ (12), it also reacted in neat MeI (with acetone and hexane added later for isolation) to form an analogue of $\mathbf{8 a}, \operatorname{PtIMe}_{2}\left\{\left(\mathrm{p}_{7}\right)_{3}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)\right.$ -$\left.\mathrm{CH}-N, N^{\prime}, C\right\}$ (13).

$$
\begin{array}{r}
\operatorname{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}+\mathrm{RX} \rightarrow \operatorname{PtXMe}(\mathrm{R})\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, C\right\}(\mathbf{8 a}, \mathbf{b}) \\
\left(\mathrm{RX}=\operatorname{MeI}(\mathbf{8 a}), \mathrm{PhCH}_{2} \mathrm{Br}(\mathbf{8 b})\right)
\end{array}
$$

These unexpected reactions may proceed via cyclometallation of $\mathrm{PtMe}_{2}(\mathrm{~L})$, e.g. to form [$\left.\mathrm{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}\right\}\right]_{n}$ (2) (perhaps $n=1$ with coordinated acetone), prior to rapid oxidative addition, with the solvent systems acetone/RX and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{RX}$ encouraging the cyciometaliation that does not occur in acetone or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ alone. Under these conditions unidentate (pz$)_{3} \mathrm{CH}$ is unlikely as a precursor to metallation, and indeed an analogous reaction does not occur for $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2} \mathrm{CH}_{2}\right\}$, which does undergo cyclometallation in pyridine. If unidentate coordination is precluded, then cyclometallation of the axial uncoordinated ring by the $\mathrm{PtC}_{2} \mathrm{~N}_{2}$ centre presumably occurs, with the reactivity of platinum perhaps activated by the initial stages of oxidative addition or coordination of RX. In contrast to $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$, the palladium analogue reacts with methyl iodide to form the palladium(IV) complex [PdMe $\left.\left.\mathrm{P}_{3}(\mathrm{pz})_{3} \mathrm{CH}-N, N^{\prime}, N^{\prime \prime}\right\}\right] \mathrm{I}[28,40]$.

In view of these results we treated methyl iodide with $\mathrm{PtPh}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$, but no cyclometallation occurred, the $\mathrm{Pt}^{\mathrm{IV}}$ product having the formula $\left[\mathrm{PtPh}{ }_{2} \mathrm{Me}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right.\right.$ $\left.\left.N, N^{\prime}, N^{\prime \prime}\right\}\right] I$ (14).

Experimental

The reagents $\left[\mathrm{PtMe}_{2}\left(\mathrm{SEt}_{2}\right)_{2}\right]_{2}$ [42], $\left[\mathrm{PtPh}_{2}\left(\mathrm{SEt}_{2}\right)_{2}\right]_{2}[48],(\mathrm{pz})_{3} \mathrm{CH},(\mathrm{pz})_{2}(\mathrm{mim})-$ $\mathrm{CH},(\mathrm{pz})_{2} \mathrm{CO}$ [34], $\mathrm{PtMe}_{2}(\mathrm{~L})\left(\mathrm{L}=(\mathrm{pz})_{2} \mathrm{CH}_{2},(\mathrm{py})(\mathrm{pz}) \mathrm{CH}_{2},(\mathrm{pz})(\mathrm{mim}) \mathrm{CH}_{2}\right)$ [33], (py) $(\mathrm{pz}) \mathrm{CH}_{2}$ and $(\mathrm{pz})(\mathrm{mim}) \mathrm{CH}_{2}$ [35], $(\mathrm{pz})_{2} \mathrm{CH}_{2}$ [47], $(\mathrm{pz})_{2} \mathrm{CHMe},(\mathrm{pz})_{2} \mathrm{CMe}_{2}$ and $(\mathrm{pz})_{2} \mathrm{CHPh}$ [30], and thiophene-2-carboxaldehyde [49] were prepared as previously reported. Hexane was dried over CaCl_{2}, distilled from Na /benzophenone, and stored over Na wire; pyridine was refluxed over KOH , fractionally distilled, and stored over $4 \AA$ molecular sieves; 4-methylpyridine was dried over KOH , decanted, and fractionally distilled; allyl and propargyl bromide were washed with aq. NaHCO_{3} then with water, dried over MgSO_{4}, and fractionally distilled; benzyl bromide was washed with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, water, 2 M NaOH and water, dried over MgSO_{4}, fractionally distilled under reduced pressure in the dark and stored over sieves; dichloromethane was predried over CaCl_{2}, filtered, and distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$; diethyl ether was dried over CaCl_{2} then passed through a column of sieves, refluxed, and distilled from sodium/benzophenone, and stored over sodium; other reagents and solvents were purified as previously described [14].

Microanalyses were performed by the Australian Microanalytical Service, Melbourne, and the Canadian Microanalytical Service, Vancouver. NMR spectra were recorded with a Bruker AM 300 spectrometer, with ${ }^{1} \mathrm{H}$ chemical shifts given in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}$ and ${ }^{31} \mathrm{P}$ shifts relative to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Thermogravimetric measurements were carried out with a Rigaku-Denki Differential Scanning Calorimeter (Thermoflex 8085). Molecular weights were determined with a Knauer vapor pressure osmometer for ca. $1-3 \times 10^{-2} \mathrm{M}$ solutions in chloroform at $37^{\circ} \mathrm{C}$, and molar conductances were measured with a Philips PW 9504/00 conductivity meter with a Griffin and George conductivity cell for ca. $10^{-3} M$ solutions in acetone at $25^{\circ} \mathrm{C}$. Several complexes were insufficiently soluble for these measurements.

Bis(pyrazol-1-yl)(thien-2-yl)methane, $(p z)_{2}(t h i) \mathrm{CH}$

Bis(pyrazol-1-yl)methanone ($0.98 \mathrm{~g}, 6.3 \mathrm{mmol}$), thiophene-2-carboxaldehyde (0.58 $\mathrm{g}, 6.2 \mathrm{mmol}$), and a catalytic amount of anhydrous cobalt(II) chloride (0.01 g) were placed in a flask which was being flushed with nitrogen through a side arm. The mixture was warmed for ca .2 h until evolution of CO_{2} had ceased, water (5 ml) was added, and the mixture extracted with dichloromethane ($2 \times 20 \mathrm{ml}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, the dichloromethane was removed under vacuum after filtration, and the product recrystallized from hot hexane (white crystals, m.p. $87^{\circ} \mathrm{C}$). (Found: C, 57.4; H, 4.5; N, 24.3. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$ calcd.: C, 57.4; H, 4.4; N, $24.3 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 8.17(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.92\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{45} 2.4 \mathrm{~Hz}\right)$, $7.59\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}(5)\right.$ (thi), $\left.J_{45} 5.1 \mathrm{~Hz}\right), 7.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}(3), J_{34} 1.5 \mathrm{~Hz}\right), 7.08(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}(3)$ and $\mathrm{H}(4)$ (thi)), 6.33 ($2 \mathrm{H}, \mathrm{t}, \mathrm{H}(4)$). MS: $m / e 320$ ($M, 5 \%$), 214 (8\%), 163 (100%), 91 (2\%).

1-bromo-2-(pyrazol-1-yl)ethane, $\mathrm{pzCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
A mixture of pyrazole ($7 \mathrm{~g}, 102.9 \mathrm{mmol}$) and tetrabutylammonium bisulphate (0.4 g) in sodium hydroxide (30 ml of 40% solution) were vigorously stirred under nitrogen as 1,2 -dibromoethane (50 ml) was added. The mixture was vigorously refluxed for 1 h then cooled, and the organic layer was separated and the aqueous
layer extracted with dichloromethane ($3 \times 20 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, taken to low volume by rotary evaporation, the residue distilled under vacuum $\left(64-66^{\circ} \mathrm{C}\right.$ at 0.5 mmHg$)$ to give a viscous oil 52% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(3), J_{34} 1.6 \mathrm{~Hz}\right), 7.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{45} 2.1 \mathrm{~Hz}\right), 6.26$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{H}(4)), 4.51\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Br}\right)$ and $3.73\left(2 \mathrm{H}, \mathrm{t}, \mathrm{pzCH}_{2}, J(\mathrm{HH}) 12.7 \mathrm{~Hz}\right) . \mathrm{MS}$: $m / e 175$ ($M, 5 \%$), 174 (60%), 176 (60%), 95 (100%), 68 (100%).

PtMe ${ }_{2}(L)\left(L=(p z)_{3} \mathrm{CH},(p z)_{2} C H P h\right)$
The ligand (0.32 mmol) was added to a suspension of $\left[\mathrm{PtMe}_{2}\left(\mathrm{SEt}_{2}\right)\right]_{2}(0.16$ mmol) in benzene (20 ml) and the mixture stirred and heated to reflux under nitrogen. Near to the reflux temperature a pale yellow solution was formed, and the product separated out after a further 10 min heating. It was collected, washed with diethyl ether, air dried, and then vacuum dried $\left(60^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$. The complexes are insoluble in organic solvents.
$\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2} \mathrm{CH}\right\}$ and $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}, 90 \%$ yield, white solids, IR spectra as reported [21].
$\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2} \mathrm{CHPh}\right\}, 90 \%$ yield, white solid. (Found: C, 39.8; H, 4.3; N, 12.0. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Pt}$ calcd.: $\left.\mathrm{C}, 40.0 ; \mathrm{H}, 4.2 ; \mathrm{N}, 12.5 \%\right)$.
$\mathrm{PtMe}_{2}(L)\left(L=(p z)_{2} \mathrm{CHMe},(p z)_{2} \mathrm{CMe}_{2},(p z)_{2}(\mathrm{mim}) \mathrm{CH},(p z)_{2}(\mathrm{thi}) \mathrm{CH}\right)$
The ligand (0.32 mmol) was added to a solution of $\left[\mathrm{PtMe}_{2}\left(\mathrm{SEt}_{2}\right)\right]_{2}(0.16 \mathrm{mmol})$ in acetone (20 ml) and the solution stirred and heated under nitrogen. After 10 min the solution was cooled, hexane (5 ml) added, and the volume reduced by rotary evaporation until the product began to separate out. The product was collected, washed with diethyl ether, and air and vacuum dried.
$\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2} \mathrm{CHMe}\right\}, 88 \%$ yield, white microcrystalline solid. (Found: $\mathrm{C}, 30.7 ; \mathrm{H}$, 4.3; N, 14.2. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Pt}$ calcd.: $\left.\mathrm{C}, 31.0 ; \mathrm{H}, 4.2 ; \mathrm{N}, 14.5 \%\right) .{ }^{1} \mathrm{H}$ NMR ((CD2 $\left.)_{2} \mathrm{CO}\right)$: δ, ambient, all resonances broad, $8.14(2 \mathrm{H}, \mathrm{H}(5)), 7.79(2 \mathrm{H}, \mathrm{H}(3)), 7.22(1 \mathrm{H}, \mathrm{CH})$, $6.43(2 \mathrm{H}, \mathrm{H}(4)), 2.50(3 \mathrm{H}, \mathrm{Me}), 0.66(6 \mathrm{H}, \mathrm{t}, \mathrm{PtMe}) . \mathrm{At}-25^{\circ} \mathrm{C}$, conformers A and B, $6.46(\mathrm{t}, \mathrm{H}(4))$; conformer $\Lambda, 8.13\left(\mathrm{~d}, \mathrm{H}(5), J_{45} 2.7 \mathrm{~Hz}\right), 7.84\left(\mathrm{~d}, \mathrm{H}(3), J_{34} 2.1 \mathrm{~Hz}\right)$, $7.27(\mathrm{q}, \mathrm{CH})$ and $2.60(\mathrm{~d}, \mathrm{Me}, J(\mathrm{HMe}) 6.6 \mathrm{~Hz}), 0.64(\mathrm{t}, \mathrm{PtMe}, J(\mathrm{HPt}) 89.2 \mathrm{~Hz})$; conformer B, $8.25\left(\mathrm{~d}, \mathrm{H}(5), J_{45} 2.7 \mathrm{~Hz}\right), 7.76\left(\mathrm{~d}, \mathrm{H}(3), J_{34} 2 \mathrm{~Hz}\right), 7.14(\mathrm{q}, \mathrm{CH})$ and $2.46(\mathrm{~d}, \mathrm{Me}, J(\mathrm{HMe}) 7 \mathrm{~Hz}), 0.62(\mathrm{t}, \mathrm{PtMe}, J(\mathrm{HPt}) 88.8 \mathrm{~Hz})$.
$\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2} \mathrm{CMe}_{2}\right\}, 82 \%$ yield, a white crystalline solid that is unstable and becomes yellow during several days and so gives a poor microanalysis. (Found: C , 31.2; H, 4.4; N, 13.5. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Pt}$ calcd.: $\left.\mathrm{C}, 32.9 ; \mathrm{H}, 4.5 ; \mathrm{N}, 14.0 \%\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$, ambient, 7.94 (d with poorly resolved $J(\mathrm{HPl})$ satellites, $(\mathrm{H}(3)), 7.76$ (d, $\mathrm{H}(5)), 6.35$ (t, H(4)), 2.71 (b, Me), 0.84 (t, PtMe). At $-20^{\circ} \mathrm{C}, 7.91\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}(3), J_{34}\right.$ $2.1 \mathrm{~Hz}) .7 .78\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{44} 2.8 \mathrm{H} 7\right), 6.36(2 \mathrm{H}, \mathrm{t}, \mathrm{H}(4)), 2.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and 2.46 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.82(6 \mathrm{H}, \mathrm{t}, \mathrm{PtMe}, J(\mathrm{HPt}) 87.4 \mathrm{~Hz})$.
$\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{CH}\right\}, 86 \%$ yield, white crystalline solid. (Found: $\mathrm{C}, 33.4 ; \mathbf{H}$, 3.6; N, 18.2. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{Pt}$ calcd.: $\left.\mathrm{C}, 34.3 ; \mathrm{H}, 4.4 ; \mathrm{N}, 18.4 \%\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$: $\delta 9.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5)\right.$ (uncoord.), $\left.J_{45} 2.6 \mathrm{~Hz}\right), 8.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{45} 2.7 \mathrm{~Hz}\right), 8.23(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}), 7.95\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(3), J_{34} 2.1 \mathrm{~Hz}\right), 7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5)(\mathrm{mim})), 7.36(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}(4)(\mathrm{mim})+\mathrm{H}(3)$ (uncoord.)), $6.50(1 \mathrm{H}, \mathrm{t}, \mathrm{H}(4)), 6.27(1 \mathrm{H}, \mathrm{t}, \mathrm{H}(4)$ (uncoord.)), 3.97 $(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 0.70(3 \mathrm{H}, \mathrm{t}, \mathrm{PtMe}, J(\mathrm{HPt}) 90 \mathrm{~Hz})$ and $0.60(3 \mathrm{H}, \mathrm{t}, \mathrm{PtMe}, J(\mathrm{HPt}) 87.3$ Hz).
$\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2}(\mathrm{thi}) \mathrm{CH}\right\}$, 75% yield, white. (Found: $\mathrm{C}, 34.5 ; \mathrm{H}, 3.7 ; \mathrm{N}, 12.2$. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{SPt}$ calcd.: $\left.\mathrm{C}, 34.3 ; \mathrm{H}, 3.5 ; \mathrm{N}, 12.3 \%\right) .{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 8.51(1 \mathrm{H}$, s, CH), $8.30\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{4 \mathrm{~s}} 2.6 \mathrm{~Hz}\right), 7.93(2 \mathrm{H}, \mathrm{td}, \mathrm{H}(3), J(\mathrm{HPt}) 9.3 \mathrm{~Hz}), 7.49(1 \mathrm{H}$, d, $\mathrm{H}(5)($ thi $)$), $7.10(1 \mathrm{H}, \mathrm{b}, \mathrm{H}(3)($ thi $)$), $6.95(1 \mathrm{H}, \mathrm{t}, \mathrm{H}(4)($ thi) $), 6.52(2 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)), 0.61$ $(6 \mathrm{H}, \mathrm{t}, \mathrm{PtMe}, J(\mathrm{HPt}) 89.5 \mathrm{~Hz})$.
$\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{4} \mathrm{C}\right\} \cdot \frac{1}{4}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right)$, 91% yield, white. (Found: C, 38.6; H, 4.1; N, 21.6. $\mathrm{C}_{15.75} \mathrm{H}_{20.5} \mathrm{~N}_{8} \mathrm{O}_{0.25} \mathrm{Pt}$ calcd.: $\left.\mathrm{C}, 37.7 ; \mathrm{H}, 4.1 ; \mathrm{N}, 20.4 \%\right) .{ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$: $\delta 8.12(2 \mathrm{H}, \mathrm{dd}(\mathrm{b}), \mathrm{H}(3)), 7.90(2 \mathrm{H}, \mathrm{s}(\mathrm{b}), \mathrm{H}(3)), 7.30(2 \mathrm{H}, \mathrm{dd}(\mathrm{b}), \mathrm{H}(5)), 6.77(2 \mathrm{H}, \mathrm{s}(\mathrm{b})$, $\mathrm{H}(5)), 6.62(4 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)), 0.49(6 \mathrm{H}, \mathrm{t}, \mathrm{PtMe})$. At $-40^{\circ} \mathrm{C}$, ring A: $7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(3)$, $\left.J_{34} 1.1 \mathrm{~Hz}\right), 6.61(\mathrm{~m}, \mathrm{H}(4)), 6.94\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{45} 2.6 \mathrm{~Hz}\right)$; ring B: $8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(3)$, $\left.J_{34} 1.8 \mathrm{~Hz}\right), 7.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{45} 3.0 \mathrm{~Hz}\right), 6.77(1 \mathrm{H}, \mathrm{t}, \mathrm{H}(4))$; ring C: $8.08(1 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{H}(3), J_{34} 1.5 \mathrm{~Hz}\right), 7.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{45} 3.0 \mathrm{~Hz}\right), 6.63(\mathrm{~m}, \mathrm{H}(4))$; ring D: $8.19(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{H}(3), J_{34} 1.5 \mathrm{~Hz}\right), 6.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{45} 2.7 \mathrm{~Hz}\right), 6.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)) ; 0.46(3 \mathrm{H}, \mathrm{t}$, PtMe, $J(\mathrm{HPt}) 89.5 \mathrm{~Hz}), 0.42(3 \mathrm{H}, \mathrm{t}, \mathrm{PtMe}, J(\mathrm{HPt}) 89.8 \mathrm{~Hz})$.

PtPh $h_{2}\left((p z)_{3} \mathrm{CH}\right\}$

The ligand (0.46 mmol) was added to a suspension of $\left[\mathrm{PtPh}_{2}\left(\mathrm{SEt}_{2}\right)\right]_{2}(0.23$ mmol) in benzene (20 ml) under nitrogen. After $5-10 \mathrm{~min}$ heating the solution turned pale yellow and a white precipitate of $\mathrm{PtPh}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right)$ formed. The white solid was collected, washed with diethyl ether, and air and vacuum dried (94\%). (Found: C, 47.1; H, 3.3; N, 14.9. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{Pt}$ calcd.: $\mathrm{C}, 46.9 ; \mathrm{H}, 3.6 ; \mathrm{N}, 15.0 \%$). ${ }^{1} \mathrm{H}$ NMR ((CD $\left.)_{2} \mathrm{CO}\right): \delta 9.27(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5)\right.$ (uncoord.), $\left.J_{45} 2.6 \mathrm{~Hz}\right)$, $8.49\left(2 \mathrm{H}\right.$, dd, $\mathrm{H}(5)$ (coord.), $\left.J_{45} 3.0 \mathrm{~Hz}\right), 7.69\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(3)\right.$ (uncoord.), $\left.J_{34} 1.7 \mathrm{~Hz}\right)$, $7.35(6 \mathrm{H}, \mathrm{m}, \mathrm{H}(3)$ (coord.) and $\mathrm{Ph}(2,6), J(\mathrm{HPt}) 73.0 \mathrm{~Hz}), 6.79(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}(3.5)), 6.68$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}(4)$), $6.56(3 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)$ (coord. and uncoord.)).

Cyclometallation reactions

PtMe $\left\{(p z)_{2}\left(C_{3} \mathrm{II}_{2} \mathrm{~N}_{2}\right) \mathrm{CII}-\mathrm{N}, \mathrm{C}^{\prime}\right\}(p y)$ (Ia). A suspension of $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}$ in pyridine ($5-10 \mathrm{ml}$) under nitrogen was kept at ambient temperature until the solid had dissolved. Hexane was added until a cloudiness persisted and the resulting precipitate was collected, washed with diethyl ether, and vacuum dried at $50^{\circ} \mathrm{C}$. Yield 80%, IR and NMR as reported [21].

Complexes with 4-methylpyridine and N-methylimidazole were obtained similarly.
$\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, \mathrm{C}^{\prime}\right\}(4-\mathrm{mpy})$ (1b), white crystalline solid, 82%. (Found: C, 40.3; H, 3.8; N, 18.8. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{Pt}$ calcd.: C, 39.5; H, 3.7; N, 19.1\%).
$\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{C}^{\prime}\right\}(\mathrm{N}-\mathrm{mim}) \quad$ (1c), white crystalline solid, 76%. (Found: C, 35.7; H, 3.6; N, 22.1. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{Pt}$ calcd.: C, $35.6 ; \mathrm{H}, 3.6 ; \mathrm{N}, 22.2 \%$).

For complexes 3-5 triphenylphosphine was added to the pyridine solution after cyclometallation.

PtMe $\left\{(\mathrm{pz})\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}_{2}-\mathrm{C}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(3)$, white powder, 58%. (Found: C, 59.5 ; $\mathrm{H}, 4.4 ; \mathrm{N}, 6.1 . \mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: $\mathrm{C}, 59.9 ; \mathrm{H}, 4.6 ; \mathrm{N}, 6.4 \%$).

PtMe $\left\{(\mathrm{pz})\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CHPh}-N, C^{\prime}\right\}\left(\mathrm{PPh}_{3}\right)$ (4), white powder, 63\%. (Found: C, 55.2; $\mathrm{H}, 4.3 ; \mathrm{N}, 7.9 . \mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{PPt}$ calcd.: $\mathrm{C}, 55.2 ; \mathrm{H}, 4.2 ; \mathrm{N}, 8.0 \%$).

PtMe $\left\{(\mathrm{pz})(\mathrm{mim})\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, \mathrm{C}^{\prime}\right\}\left(\mathrm{PPh}_{3}\right)(5)$, white powder, 79\%. (Found: C , 51.4; H, 4.4; N, 12.3. $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{PPt}$ calcd.: $\left.\mathrm{C}, 51.5 ; \mathrm{H}, 4.2 ; \mathrm{N}, 12.0 \%\right)$.

Platinum(II) complexes obtained from PtMe $\left\{(p z)_{2}\left(C_{3} H_{2} N_{2}\right) C H-N, C^{\prime}\right\}(p y)$ (la)
PtMe $\left\{(p z)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{C}^{\prime}\right\}(\mathrm{CO})$ (1d). A suspension of la in acetone was refluxed until a clear solution formed, and carbon monoxide was bubbled through for 10 min at ambient temperature. Hexane was added and the white solid was collected, washed with diethyl ether and vacuum dried, yield 95\%. (Found: C, 32.0; H, 2.7; N, 18.5. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{H}_{6}$ OPt calcd.: C, 31.9; H, 2.7; N, 18.6\%). $\nu(\mathrm{CO}) 2074 \mathrm{~cm}^{-1}$.

PtMe $\left\{(p z)_{2}\left(C_{3} H_{2} N_{2}\right)\right.$ CH-N, $\left.C^{\prime}\right\}\left\{P P h_{2}(o-t o l y l)\right\}$ (Ie). A suspension of la (0.2 mmol) and PPh_{2} (o-tolyl) (0.4 mmol) in acetone (20 ml) was heated with stirring until the solid dissolved, when the heating was stopped. The solution was allowed to cool to ambient temperature then filtered, and hexane was added until cloudiness persisted and the solution left to allow crystallization. The crystalline product was collected and dried, 70%. (Found: C, $52.5 ; \mathrm{H}, 4.3 ; \mathrm{N}, 12.4 ; \mathrm{P}, 5.0 . \mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{PPt}$ calcd.: C, 5 i .5 ; H, 4.2; N, 12.0; P, 4.4\%).

The following complexes ($\mathbf{1 f}, \mathbf{6 a - h}$) were prepared by an identical procedure.
$\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, C^{\prime}\right\}\left\{\mathrm{PPh}_{2}\left(o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right\}$ (1f), white powder, 68%. (Found: C, 51.1; H, 4.1; N, 11.6; P, 3.7. $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{OPPt}$ calcd.: C, 50.3; H, 4.1; N, 11.7; P, 4.3\%).
$\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left(\mathrm{PPh}_{3}\right)_{2}$ (6a), white powder, 68%. IR spectrum as reported [21]. (Found: C, 51.1; H, 4.1; N, 11.6; P, 3.7. $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: C , 50.3 ; H, 4.1; N, 11.7; P, 4.3\%).

PtMe $\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left(\mathrm{PMePh}_{2}\right)_{2}(\mathbf{6 b})$, white powder, 88%. (Found: C , 53.5; H, 4.9; N, 10.3; P, 7.9. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: $\mathrm{C}, 53.9$; $\mathrm{H}, 4.7$; H, 10.2; P, 7.5\%).

PtMe $\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathbf{6 c})$, white powder, 81%. (Found: C , 46.2; H, 4.9; N, 11.9; P, 9.9. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: $\mathrm{C}, 46.3 ; \mathrm{H}, 4.9 ; \mathrm{N}, 12.0 ; \mathrm{P}$, 9.9\%).
$\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left(\mathrm{PEtPh}_{2}\right)_{2}$ (6d), white powder, 74%. (Found: C , $55.2 ; \mathrm{H}, 5.5 ; \mathrm{N}, 9.6 ; \mathrm{P}, 7.7 . \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: $\left.\mathrm{C}, 55.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 9.9 ; \mathrm{P}, 7.3 \%\right)$.

PtMe $\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left\{\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right\}_{2}(\mathbf{6 e})$, white powder, 76%. (Found: $\mathrm{C}, 60.5 ; \mathrm{H}, 4.8 ; \mathrm{N}, 8.5 ; \mathrm{P}, 6.8 . \mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: $\mathrm{C}, 60.3 ; \mathrm{H}, 4.8 ; \mathrm{N}, 8.6 ; \mathrm{P}$, 6.4\%).
$\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}$ (6f), white powder, 88%. (Found: C , 53.6; H, 4.1; $\mathrm{N}, 7.9 ; \mathrm{P}, 6.1 . \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: $\mathrm{C}, 54.1 ; \mathrm{H}, 4.1 ; \mathrm{N}, 8.06 ; \mathrm{P}$, 5.9\%).
$\operatorname{PtMe}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CH}_{2}\right\}(6 \mathrm{~g})$, white powder, 75%. (Found: C , 53.7; H, 4.4; N, 10.5; P, 7.3. $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: $\mathrm{C}, 53.5 ; \mathrm{H}, 4.2 ; \mathrm{N}, 10.4$; P, 7.7\%).

PtMe $\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{C}\right\}\left\{\left(\mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2}\right\}$ (6h), white powder, 72%. (Found: C, 53.9; H, 4.4; N, 10.2; P, 7.7. $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ calcd.: $\mathrm{C}, 54.1 ; \mathrm{H}, 4.4 ; \mathrm{N}, 10.2 ; \mathrm{P}$, 7.5\%).
[PtMe $\left.\left\{(p z)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}\right]\right]_{n}$ (2)
This complex may be obtained either by refluxing a suspension of $\mathbf{1 a}$ in benzene for 30 min or by heating (with stirring) a suspension of $\mathbf{1 a}$ until a clear solution is obtained followed by addition of hexane to the hot solution, yield 96\%. (Found: C, $31.8 ; \mathrm{H}, 3.0 ; \mathrm{N}, 20.2 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{Pt}$ calcd.: $\mathrm{C}, 31.2 ; \mathrm{H}, 2.9 ; \mathrm{N}, 19.9 \%$). $\boldsymbol{\nu}_{\max }$ (Nujol mull) $3100,1511,1372,1286,1084,839,814,793 \mathrm{~cm}^{-1}$.

Synthesis of $\left[\operatorname{PtMe}(R)\left\{(p z)_{2}\left(C_{3} H_{2} N_{2}\right) C H-N, N^{\prime}, C^{\prime \prime}\right\}(p y)\right] X(7 a-d)$ from $1 a$
Iodomethane ($100 \mu 1,1.61 \mathrm{mmol}$) was added to a suspension of $1 \mathbf{a}(0.23 \mathrm{mmol})$ in acetone (10 ml), the flask stoppered, and stirring continued until the solid had dissolved. Addition of hexane and collection and vacuum drying ($50^{\circ} \mathrm{C}, 2 \mathrm{~h}$) of the precipitate gave $7 \mathrm{a}(\mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{I})$, 95%. (Found: $\mathrm{C}, 33.0 ; \mathrm{H}, 3.4 ; \mathrm{N}, 14.6$. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{7} \mathrm{IPt}$ calcd.: $\left.\mathrm{C}, 33.3 ; \mathrm{H}, 3.7 ; \mathrm{N}, 14.9 \%\right) . \Omega_{M} 89 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in acetone.

The following complexes were prepared similarly.
$\left[\mathrm{PtMe}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, C^{\prime \prime}\right\}(\mathrm{py})\right] \mathrm{Br}(7 \mathrm{~b}), 88 \%$. (Found: $\mathrm{C}, 41.1$; $\mathrm{H}, 3.6 ; \mathrm{N}, 14.3 . \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{BrPt}$ calcd.: C, $41.0 ; \mathrm{H}, 3.6 ; \mathrm{N}, 14.6 \%$). $\Omega_{M} 65 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ mol^{-1} in acetone.
[$\left.\mathrm{PtMe}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, C^{\prime \prime}\right\}(\mathrm{py})\right] \mathrm{Br}$ (7c), 91\%. (Found: $\mathrm{C}, 36.7$; $\mathrm{H}, 3.6$; $\mathrm{N}, 15.6 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{BrPt}$ calcd.: $\left.\mathrm{C}, 36.6 ; \mathrm{H}, 3.6 ; \mathrm{N}, 15.7 \%\right) . \Omega_{M} 84$ ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in acetone.
$\left[\mathrm{PtMe}\left(\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}\right)\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, \mathrm{C}^{\prime \prime}\right\}(\mathrm{py})\right] \mathrm{Br} \cdot \frac{1}{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \quad$ (7d), 84%, prepared from $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$, and recrystallized from acetone. (Found: C , 37.0; $\mathrm{H}, 3.6 ; \mathrm{N}, 18.0 . \mathrm{C}_{20.5} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{BrO}_{0.5} \mathrm{Pt}$ calcd.: $\left.\mathrm{C}, 37.8 ; \mathrm{H}, 3.6 ; \mathrm{N}, 15.1 \%\right) . \Omega_{M} 70$ ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in acetone.

Synthesis of PtXMe(R)\{(pz) $\left.)_{2}\left(C_{3} H_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{N}^{\prime}, \mathrm{C}^{\prime \prime}\right\}(8 a$, b) from 2
A similar procedure to that above for synthesis of $7 \mathrm{a}-\mathrm{d}$ was followed, commencing with 2 and RX and filtration prior to addition of hexane.

PtIMe $2\left(\mathrm{pz}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, \mathrm{C}^{\prime \prime}\right\} \cdot \frac{1}{10}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right)$ (8a), 94\%. (Found: C, 29.4; H, 3.4; N, 13.9. $\mathrm{C}_{12.3} \mathrm{H}_{15.6} \mathrm{~N}_{6} \mathrm{O}_{0.1} \mathrm{BrPt}$ calcd.: $\mathrm{C}, 28.9$; H, 3.4; N, 13.5\%).
$\operatorname{PtBrMe}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-N, N^{\prime}, \mathrm{C}^{\prime \prime}\right\} \cdot \frac{1}{5} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8b), 93\%. (Found: C, 35.1; H, 3.2; N, 14.3. $\mathrm{C}_{18.2} \mathrm{H}_{19.4} \mathrm{~N}_{6} \mathrm{BrCl}_{0.4} \mathrm{Pt}$ calcd.: $\mathrm{C}, 35.1 ; \mathrm{H}, 3.2 ; \mathrm{N}, 13.8 \%$).

Synthesis of PtXMe $(R)\left\{(p z)_{2}\left(C_{3} H_{2} N_{z}\right) C H-N, N^{\prime}, C^{\prime \prime}\right\}(8 a, b)$ from PtMe $2\left\{(p z)_{3} C H\right\}$
Iodomethane or benzyl bromide (1.7 mmol) was added to a suspension of $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}(0.34 \mathrm{mmol})$ in acetone (10 ml), the flask was stoppered and wrapped with foil, and the suspension stirred for 3 h to give a yellow solution. The excess of MeI was removed by rotary evaporation and hexane added to precipitate a white solid, which was filtered and vacuum dried $\left(60^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$.
$\left[\right.$ PtMe $\left._{2}\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{N}^{\prime}, \mathrm{C}^{\prime \prime}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ (9).
Triphenylphosphine $(0.2 \mathrm{mmol})$ and $1 \mathrm{a}(0.2 \mathrm{mmol})$ were warmed and stirred in acetone (10 ml) under nitrogen until no solid remained (ca. 10 min), then cooled to ambient temperature and methyl iodide (1 mmol) was added and the solution stirred for 30 min . The residual MeI and some acetone were removed by rotary evaporation, and hexane added until precipitation commenced. The precipitate was collected and vacuum dried ($50^{\circ} \mathrm{C}, 2 \mathrm{~h}$), 92%. (Found: $\mathrm{C}, 43.8 ; \mathrm{H}, 3.8 ; \mathrm{N}, 10.4 ; \mathrm{P}$, 4.0. $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{6}$ IPPt calcd.: $\left.\mathrm{C}, 43.5: \mathrm{H}, 3.7 ; \mathrm{N}, 10.1 ; \mathrm{P}, 3.7 \%\right) . \Omega_{M} 95 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ mol^{-1} in acetone.
$\left[\mathrm{PtMe}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{pz}-\mathrm{N}, \mathrm{C}^{\prime}\right)\left\{(\mathrm{pz})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{N}^{\prime}, \mathrm{C}^{\prime \prime}\right\}\right] \mathrm{Br} \cdot \frac{1}{3} \mathrm{CHCl}_{3}(10)$.
A suspension of 1a $(0.2 \mathrm{mmol})$ and $\mathrm{pzCH}_{2} \mathrm{CH}_{2} \mathrm{Br}(0.23 \mathrm{mmol})$ in acetone $(20 \mathrm{ml})$ with some chloroform added to ensure solubility was refluxed for 30 min , then
allowed to cool to ambient temperature. The solution volume was reduced by ca. one-half by rotary evaporation and hexane added until cloudiness developed. The solution was set aside overnight and the small crystals of the product were collected; 89% yield. (Found: C, $30.7 ; \mathrm{H}, 3.6 ; \mathrm{N}, 17.4 . \mathrm{C}_{16.33} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{BrClPt}$ calcd.: C, 30.7; H , 3.1; N, 17.6\%).
[PtMe $\left\{\left((\mathrm{pz})(\mathrm{mim})\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{N}^{\prime}, \mathrm{C}^{\prime \prime}\right\}\left(\mathrm{PPh}_{3}\right)\right] I$ (IIa).
Iodomethane (0.70 mmol) was added to $5(0.14 \mathrm{mmol})$ in acetone $(10 \mathrm{ml})$ and the solution stirred for 30 min . The residual MeI was removed by rotary evaporation and hexane added until crystallization commenced, 96% yield. (Found: C, $51.5 ; \mathrm{H}$, 4.2; N, 12.0. $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{6}$ IPPt calcd.: $\mathrm{C}, 51.4 ; \mathrm{H}, 4.4 ; \mathrm{N}, 12.3 \%$). $\Omega_{M} 91 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ mol^{-1} in acetone.
[PtMe $\left.2\left((p z)(m i m)\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right) \mathrm{CH}-\mathrm{N}, \mathrm{N}^{\prime}, \mathrm{C}^{\prime \prime}\right)(p y)\right] I(\mathrm{Ilb})$.
On addition of $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{2}(\mathrm{mim}) \mathrm{CH}\right)(0.44 \mathrm{mmol})$ to pyridine $(5 \mathrm{ml})$ under nitrogen the solid dissolved rapidly with evolution of bubbles and formation of a yellow solution. An excess of hexane was added to give a white solid, which was collected and washed with hexane ($5 \times 5 \mathrm{ml}$) and diethyl ether ($5 \times 5 \mathrm{ml}$). The damp solid was dissolved in acetone (10 ml), Mel (2.2 mmol) added, and the solution stirred for 30 min , then filtered. Addition of hexane gave a precipitate of the product, which was collected and vacuum dried $\left(50^{\circ} \mathrm{C}, 2 \mathrm{~h}\right), 64 \%$ yield. (Found: C , $33.3 ; \mathrm{H}, 3.5 ; \mathrm{N}, 14.2 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{IPPt}$ calcd.: $\left.\mathrm{C}, 32.8 ; \mathrm{H}, 3.5 ; \mathrm{N}, 14.4 \%\right) . \Omega_{M} 78$ ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in acetone.

PtIMe $3\left\{(p z)_{4} C-N, N^{\prime}\right\}$ (I2)

An excess of iodomethane was added to $\mathrm{PtMe}_{2}\left\{(\mathrm{pz})_{4} \mathrm{C}\right\}$ in acetone, the mixture stirred for 15 min , the excess of Mel removed by rotary evaporation, hexane added until cloudiness developed, and the white powder collected; 76% yield. (Found: C, $30.2 ; \mathrm{H}, 3.4 ; \mathrm{N}, 17.1, \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{8}$ IPPt calcd.: $\mathrm{C}, 29.8 ; \mathrm{H}, 2.8 ; \mathrm{N}, 17.4 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 8.36\left(2 \mathrm{H}\right.$, d with poorly resolved $J(\mathrm{HPt})$ satellites, $\left.\mathrm{H}(3), J_{34} 1.8 \mathrm{~Hz}\right)$, $8.06\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(3)\left(\right.\right.$ uncoord. A), $\left.J_{34} 1.8 \mathrm{~Hz}\right), 7.76\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(3)\right.$ (uncoord. B), $J_{34} 1.8$ $\mathrm{Hz}), 7.27\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}(5), J_{45} 2.8 \mathrm{~Hz}\right), 6.78(3 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)+\mathrm{H}(5)$ (uncoord. B)), 6.67 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)$ (uncoord. A)), $6.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)$ (uncoord. B$)$), $6.52(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(5)$ (uncoord. A), $\left.J_{45} 2.7 \mathrm{~Hz}\right), 1.46\left(6 \mathrm{H}, \mathrm{t}, \mathrm{PtCH}_{3}\right.$ trans to $\left.\mathrm{pz}, J(\mathrm{HPt}) 73.8 \mathrm{~Hz}\right)$ and $0.26(3 \mathrm{H}$, $\mathrm{t}, \mathrm{PtCH}_{3}$ trans to I, $J(\mathrm{HPt}) 72.5 \mathrm{~Hz}$). Mol. wt. 641 (calcd. 647).

$\left[\mathrm{PtPh} h_{2} \mathrm{Me}\left\{(\mathrm{pz})_{3} \mathrm{CH}-\mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}\right\}\right] I$ (14)

A procedure similar to that used for 12 gave 14. (Found: C, 39.3; H, 3.5; N, 11.7. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{6}$ IPPt calcd.: $\left.\mathrm{C}, 39.2 ; \mathrm{H}, 3.5 ; \mathrm{N}, 11.7 \%\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 12.49(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}), 9.20(3 \mathrm{H}, \mathrm{m}, \mathrm{H}(5)), 7.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}(3), J_{34} 2.2 \mathrm{~Hz}\right), 7.79\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}(3), J_{34} 2.2\right.$ $\mathrm{Hz}), 7.08(2 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)(\mathrm{Ph})), 7.03(4 \mathrm{H}, \mathrm{m}, \mathrm{H}(3,5)(\mathrm{Ph})), 6.99(4 \mathrm{H}, \mathrm{m}, \mathrm{H}(2,6)(\mathrm{Ph})), 6.58$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{H}(4)), 1.90(3 \mathrm{H}, \mathrm{t}, \mathrm{PtMe}, J(\mathrm{HPt}) 72.9 \mathrm{~Hz}) . \Omega_{M} 91 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in acetone.

Acknowledgements

We thank the Australian Research Council and The University of Tasmania for financial support, the Commonwealth Government for a Postgraduate Research Award (to R.T.H.), and Johnson Matthey Ltd. for generous loans of platinum salts.

References

1 G.W. Parshall, Acc. Chem. Res., 3 (1970) 139.
2 A.J. Carty, Organomet. Chem. Rev., Sect. A, 7 (1972) 191.
3 J. Dehand and M. Pfeffer, Coord. Chem. Rev., 18 (1976) 327.
4 M.I. Bruce, Angew. Chem., Int. Ed. Engl., (1977) 73.
5 I. Omae, Chem. Rev., 79 (1979) 28; I. Omae, Organometallic Intramolecular-coordination Compounds, J. Organomet. Chem. Library 18, 1986.
6 I. Omae, Coord. Chem. Rev., 28 (1979) 97; 32 (1980) 235; 42 (1982) 245.
7 A.J. Deeming and I.P. Rothwell, Pure Appl. Chem., 52 (1980) 649.
8 E.C. Constable, Polyhedron, 3 (1984) 1037.
9 A.D. Ryabov, Synthesis, (1985) 233.
10 G.R. Newkome, W.E. Puckett, V.K. Gupta, and G.E. Kiefer, Chem. Rev., 86 (1986) 451.
11 A. Kasahara, Bull. Chem. Soc. Jpn., 41 (1968) 1272.
12 M. Gutierrez, G.R. Newkome, and J. Selbin, J. Organomet. Chem., 202 (1980) 341.
13 K. Hiraki, Y. Fuchita, and K. Takechi, Inorg. Chem., 20 (1981) 4316.
14 A.J. Canty, N.J. Minchin, B.W. Skelton, and A.H. White, J. Chem. Soc., Dalton Trans., (1986) 2205.
15 M.G. Clerici, B.L. Shaw, and B. Weeks, J. Chem. Soc., Chem. Commun., (1973) 516.
16 A.J. Canty, N.J. Minchin, B.W. Skelton, and A.H. White, J. Chem. Soc., Dalton Trans., (1987) 1477.
17 W. Wickramasinghe, P.H. Bird, and N. Serpone, J. Chem. Soc., Chem. Commun., (1981) 1284.
18 A.C. Skapski, V.F. Sutcliffe, and G.B. Young, J. Chem. Soc., Chem. Commun., (1985) 609.
19 (a) M. Nonoyama and S. Kajita, Transition Met. Chem., 6 (1981) 163. (b) C. Cornioley-Deuschel, R. Luond, and A. von Zelewsky, Helv. Chim. Acta, 72 (1989) 377 and refs. therein.
20 A.J. Canty and N.J. Minchin, J. Organomet. Chem., 226 (1982) C14.
21 A.J. Canty, N.J. Minchin, J.M. Patrick, and A.H. White, J. Chem. Soc., Dalton Trans., (1983) 1253.
22 K. Hiraki, Y. Fuchita, and Y. Matsumoto, Chem. Lett., (1984) 1947.
23 G.R. Newkome, W.E. Puckett, G.E. Kiefer, V.K. Gupta, F.R. Fronczek, D.C. Pantaleo, G.L. McClure, J.B. Simpson, and W.A. Deutsch, Inorg. Chem. 24 (1985) 811.
24 J. Terheijden, G. van Koten, F. Muller, D.M. Grove, and K. Vrieze, J. Organomet. Chem., 315 (1986) 401; J. Terheijden, G. van Koten, J.A.M. Beek, B.K. Vriesema, R.M. Kellogg, M.C. Zoutberg, and C.H. Stam, Organometallics, 6 (1987) 89, and refs. therein.

25 M. Nonoyama and C. Sugiura, Polyhedron, 1 (1982) 179.
26 G. Minghetti, M.A. Cinellu, G. Chelucci, S. Gladiali, F. Demartin, and M. Manassero, J. Organomet. Chem., 307 (1986) 107.
27 A.J. Canty, R.T. Honeyman, B.W. Skelton, and A.H. White, Inorg. Chim. Acta, 114 (1986) L39.
28 P.K. Byers, A.J. Canty, B.W. Skelton, and A.H. White, J. Chem. Soc., Chem. Commun., (1987) 1093.
29 P.K. Byers, A.J. Canty, R.T. Honeyman, and A.A. Watson, J. Organomet. Chem., 363 (1989) C22.
30 K.I. The and L.K. Peterson, Can. J. Chem., 51 (1973) 422.
31 K.I. The, L.K. Peterson, and E. Kiehlmann, Can. J. Chem., 51 (1973) 2448.
32 L.K. Peterson, E. KiehImann, A.R. Sanger, and K.I. The, Can. J. Chem., 52 (1974) 2367.
33 P.K. Byers, A.J. Canty, R.T. Honeyman, and A.A. Watson, J. Organomet. Chem., 385 (1990) 417.
34 P.K. Byers, A.J. Canty, and R.T. Honeyman, J. Organomet. Chem., 385 (1990) 429.
35 P.K. Byers and A.J. Canty, Organometallics, 9 (1990) 210.
36 H.C. Clark and L.E. Manzer, Inorg. Chem., 13 (1974) 1996.
37 H.C. Clark and L.E. Manzer, Inorg. Chem., 13 (1974) 1291.
38 P.E. Rush and J.D. Oliver, J. Chem. Soc., Chem. Commun., (1974) 996.
39 H.C. Clark, G. Ferguson, V.K. Jain, and M. Parvez, J. Organomet. Chem., 270 (1984) 365.
40 P.K. Byers, A.J. Canty, B.W. Skelton, and A.H. White, Organometallics, in press.
41 J. Terheijden, G. van Koten, and J.L. de Booys, Organometallics, 2 (1983) 1882.
42 J. Kuyper, R. van der Laan, F. Jeanneaus, and K. Vrieze, Transition Met. Chem., 1 (1976) 199.
43 J.K. Jawad and R.J. Puddephatt, J. Chem. Soc., Dalton Trans., (1977) 1466.
44 J.K. Jawad and R.J. Puddephatt, J. Organomet. Chem., 117 (1976) 297.
45 R. Uson, J. Fornies, P. Espinet, and J. Garin, J. Organomet. Chem., 105 (1976) C25.
46 J.P. Collmann, J.N. Cawse, and J.W. Kang, Inorg. Chem., 8 (1969) 2524; B.E. Mann, B.L. Shaw, and N.I. Tucker, J. Chem. Soc. A, (1971) 2667; C.J. Elsevier, H. Kleijn, J. Boersma, and P. Vermeer, Organometallics, 5 (1986) 716.
47 S. Julia, P. Sala, J. del Mazo, M. Sancho, C. Ochoa, J. Elguero, J.P. Fayet, and M.-C. Vertut, J. Heterocycl. Chem., 19 (1982) 1141.
48 B.R. Steele and K. Vrieze, Transition Met. Chem., 2 (1977) 140.
49 A.W. Weston and R.J. Michaels Jr., Org. Syn., Collective vol. 4, 1963, 915.

